Analyzing Parking Signs at Scale: How Mapillary is Working with Amazon Rekognition to Help US Cities End Their Parking Troubles

Managing parking infrastructure is a billion-dollar problem for cities all across the US. There has been no easy way for cities and Departments of Transportation to access parking sign data, resulting in poor decisions around parking infrastructure and planning. Today, Mapillary and Amazon Rekognition are introducing a scalable way to help US cities get a handle of their parking infrastructure.

Building the Tools to Show Us the Way: How Mapillary is Ramping up Traffic Sign Recognition Globally

We’re releasing an update to Mapillary’s traffic sign recognition, featuring wider support of traffic sign classes globally, improved recognition accuracy, and traffic sign taxonomy.

Massive Memory Savings for Training Modern Deep Learning Architectures

Mapillary Research has developed a novel approach to training recognition models to handle up to 50% more training data than before in every single learning iteration. With this technology, we can improve over the winning semantic segmentation method of this year’s Large-Scale Scene Understanding Workshop on the challenging Mapillary Vistas Dataset, setting a new state of the art.

Human in the Loop: Perfecting AI Algorithms

Machine learning needs human input. By creating a loop where human feedback is provided to the output of AI detection algorithms, we can significantly improve the accuracy of the models and the resulting map data.

Map Data in the Era of Autonomous Driving

The development of autonomous driving sets high requirements to map data. Next to using advanced equipment to collect map data, collaborative mapping combined with computer vision is a lower-cost, faster, more scalable approach.

How to Make Time Travel Happen

The Time Travel feature on Mapillary is great for observing how places change in time. Here's an insight into how it works and what you can do to get more matches between images.

More Accurate Map Data: Improving 3D Reconstruction with Semantic Understanding

Reconstructing a 3D world from 2D images is not as straightforward for a computer as it is for humans due to the fact that some objects are moving around in the real world. Understanding an image scene through semantic segmentation improves the 3D reconstruction, resulting in more accurate map data and better navigation in the image viewer.

Towards Global Traffic Sign Recognition

We are taking a big step towards recognizing traffic signs all over the world by adding support for more than 500 traffic signs globally, together with an appearance-based taxonomy for traffic signs. This is the beginning of our journey of recognizing every road sign in the world, no matter where it is.

Building the MapillaryJS Navigation Graph

In MapillaryJS 2.0 we completely changed the way we retrieve data and build the navigation graph to improve performance. Here is how it works.

How accurate is Mapillary and how to improve?

The accuracy of Mapillary to put photos and objects on the map is in the hands of the community, literally and figuratively. Read on to find out how.